Evaluation of cumulative dose for cone‐beam computed tomography (CBCT) scans within phantoms made from different compositions using Monte Carlo simulations

نویسندگان

  • Abdullah Abuhaimed
  • Colin J. Martin
  • Marimuthu Sankaralingam
  • Kurian Oomen
  • David J. Gentle
چکیده

Measurement of cumulative dose ƒ(0,150) with a small ionization chamber within standard polymethyl methacrylate (PMMA) CT head and body phantoms, 150 mm in length, is a possible practical method for cone-beam computed tomography (CBCT) dosimetry. This differs from evaluating cumulative dose under scatter equilibrium conditions within an infinitely long phantom ƒ(0,∞), which is proposed by AAPM TG-111 for CBCT dosimetry. The aim of this study was to investigate the feasibility of using ƒ(0,150) to estimate values for ƒ(0,∞) in long head and body phantoms made of PMMA, polyethylene (PE), and water, using beam qualities for tube potentials of 80-140 kV. The study also investigated the possibility of using 150 mm PE phantoms for assessment of ƒ(0,∞) within long PE phantoms, the ICRU/AAPM phantom. The influence of scan parameters, composition, and length of the phantoms was investigated. The capability of ƒ(0,150) to assess ƒ(0,∞) has been defined as the efficiency and assessed in terms of the ratios ε(ƒ(0,150) / ƒ(0,∞)). The efficiencies were calculated using Monte Carlo simulations for an On-Board Imager (OBI) system mounted on a TrueBeam linear accelerator. Head and body scanning protocols with beams of width 40-500 mm were used. Efficiencies ε(PMMA/PMMA) and ε(PE/PE) as a function of beam width exhibited three separate regions. For beam widths < 150 mm, ε(PMMA/PMMA) and ε(PE/PE) values were greater than 90% for the head and body phantoms. The efficiency values then fell rapidly with increasing beam width before levelling off at 74% for ε(PMMA/PMMA) and 69% for ε(PE/PE) for a 500 mm beam width. The quantities ε(PMMA/PE) and ε(PMMA/Water) varied with beam width in a different manner. Values at the centers of the phantoms for narrow beams were lower and increased to a steady state for ~100-150 mm wide beams, before declining with increasing the beam width, whereas values at the peripheries decreased steadily with beam width. Results for ε(PMMA/PMMA) were virtually independent of tube potential, but there was more variation for ε(PMMA/PE) and ε(PMMA/Water). ƒ(0,150) underestimated ƒ(0,∞) for beam widths used for CBCT scans, thus it is necessary to use long phantoms, or apply conversion factors (Cƒs) to measurements with standard PMMA CT phantoms. The efficiency values have been used to derive (Cƒs) to allow evaluation of ƒ(0,∞) from measurements of ƒ(0,150). The (Cƒs) only showed a weak dependence on scan parameters and scanner type, and so may be suitable for general application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computed tomography dose index and dose length product for cone‐beam CT: Monte Carlo simulations of a commercial system

Dosimetry in kilovoltage cone beam computed tomography (CBCT) is a challenge due to the limitation of physical measurements. To address this, we used a Monte Carlo (MC) method to estimate the CT dose index (CTDI) and the dose length product (DLP) for a commercial CBCT system. As Dixon and Boone showed that CTDI concept can be applicable to both CBCT and conventional CT, we evaluated weighted CT...

متن کامل

Commissioning kilovoltage cone‐beam CT beams in a radiation therapy treatment planning system

The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The be...

متن کامل

Comprehensive Monte Carlo study of patient doses from cone-beam CT imaging in radiotherapy

Accurate knowledge of ionizing radiation dose from cone-beam CT (CBCT) imaging in radiotherapy is important to allow concomitant risks to be estimated and for justification of imaging exposures. This study uses a Monte Carlo CBCT model to calculate imaging dose for a wide range of imaging protocols for male and female patients. The Elekta XVI CBCT system was modeled using GATE and simulated dos...

متن کامل

Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) ...

متن کامل

Dosimetry of CBCT: methods, doses and clinical consequences

The use of Cone beam CT (CBCT) systems for Image Guided Radiotherapy is rapidly expanding in the developed world. With its use comes concern for the increased risks of additional radiation exposure. Quantification of the imaging dose is necessary in order to report, optimise and justify CBCT exposures. This article reviews the current methods of dose measurement and calculation including dose m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015